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Abstract

The search for cost effective composite structure has motivated the investigation of several

new approaches to develop composite structure from innovative material forms. Among the
promising new approaches is the conversion of planar sheet to components of complex curvature
through sheet forming or stretch forming. In both cases the potential for material stretch in the
fiber direction appears to offer a clear advantage in formability over continuous fiber systems. In
the present study the investigators have established a framework which allows the simulation of the

anisotropic mechanisms of deformation of long discontinuous fiber laminates wherein the matrix
phase is a viscous fluid.

Predictions for the effective viscosities of a hyper-anisotropic medium consisting of

collimated, discontinuous fibers suspended in a viscous matrix developed earlier by the authors
have been extended to capture the characteristics of typical polymers including non-Newtonian
behavior and temperature dependence. In addition, the influence of fiber misorientation has also
been modeled by compliance averaging to determine ensemble properties for a given orientation
distribution.

A design tool is presented for predicting the effect of material heterogeneity on the

performance of curved composite beams such as those used in aircraft; fuselage structures.
Material heterogeneity can be induced during manufacturing processes such as sheet forming and
stretch forming of thermoplastic composites. This heterogeneity can be introduced in the form of
fiber realignment and spreading during the manufacturing process causing radial and tangential

gradients in material properties. Two analysis procedures are used to solve the beam problems.
The fu'st method uses separate two-dimensional elasticity solutions for the stresses in the flange
and web sections of the beam. The separate solutions are coupled by requiring that forces and
displacements match at section boundaries. The second method uses an approximate Rayleigh-Ritz
technique to find the solutions for more complex beams. Analyses are performed for curved
beams of various cross-sections loaded in pure bending and with a uniform distributed load.

Preliminary results show that the geometry of the beam dictates the effect of heterogeneity on
performance. The role of heterogeneity is larger in beams with a small average radius-to-depth
ratio, R/t, where R is the average radius of the beam and t is the difference between the inside and
outside radii. Results of the analysis are in the form of stresses and displacements and are

compared to both mechanics of materials and numerical solutions obtained using finite element
analysis.
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Introduction

The extraordinary properties of collimated fiber composites consisting of continuous fibers

suspended in a polymeric matrix have been well known for the past twenty plus years. These
materials were made possible by the invention of synthetic fibers which possess specific strengths

significantly greater than conventional monolithic materials. The high cost of advanced materials
and manufacturing processes has limited much of their use to military applications where the
demand for increased performance outweighs the increased cost. Breakthroughs in manufacturing
techniques, materials and structural concepts are needed if advanced composites are to be used for

primary structure in commercial aircraft.

The recent introduction of thermoplastic polymer matrices now offers the potential to

develop manufacturing methods for these new composite materials that can take advantage of lower
cost conventional manufacturing methods. Sheet forming of metallic materials is one of the most
pervasive manufacturing methods in the contemporary technology. However, unlike monolithic
metallic sheet, continuous fiber composites possess direction of inextensibility in the fiber

direction. For these material systems the dominant modes of deformation during sheet forming are
shearing. Extensibility in the fiber direction can, however be provided by introducing breaks along
the fiber length so that the individual fibers are made discontinuous. The development of
extensibility in the fiber direction for the collimated fiber composite results in enhanced formability

of multiaxial sheet products.

The objective of the present work is to develop the science base for a series of models that
can be used to link manufacturing with structural performance. Specific goals of the project are: 1)
create models to predict the deformation mechanics and formability of long discontinuous fiber
thermoplastic composites, 2) investigate several forming methods and produce prototype curved
beam structures, 3) investigate analysis methods to predict the effects of process induced

heterogeneity on structural performance.

Chapter one describes the recent work toward the development of models for predicting
formability of discontinuous fiber thermoplastic composites. This represents the continuation of
the micromechanics models presented in the previous report dated 12/90. The recent work
includes a more general non-Newtonian matrix fluid behavior at the melt and allows for the
inclusion of temperature dependence. Additionally, the influence of fiber misorientation is
modeled to predict the effective viscosities for an ensemble for a given fiber orientation
distribution.

Chapter two presents the analyses used to predict the effects of process induced
heterogeneity on the performance of structural components. Two different approaches are used to
predict stresses and deformations in heterogeneous curved beams. One uses closed form elasticity
solutions and couples them for different regions in the structure. This procedure gives
approximate solutions for beams of various cross sections with radially heterogeneous material

properties. The second method is a Rayleigh-Ritz approach which allows for a more general
description of material heterogeneity. Chapter three describes structural testing performed on

prototype beams manufactured through a sub-contract with the Du Pont company.

The second objective listed above was the investigation of several forming methods for
curved beams made from discontinuous fiber thermoplastic composite. In the previous report, the

diaphragm forming process used at the University of Delaware was discussed. More recently, Du
Pont was sub-contracted to produce prototype parts using their patented stretch-forming process.
The final report for that sub-contract is included, unedited, in the appendix.
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1.0 Constitutive Relations for Aligned Discontinuous Fiber

Composites

1.1 Introduction

In several earlier papers [1-3] the authors developed models which predict the primary
viscosities of an anisotropic incompressible material consisting of collimated, long discontinuous

fibers suspended in a fluid matrix. A state of transverse isotropic symmetry was assumed for the
medium. These models were developed by assuming the kinematics of adjacent rigid fibers and

determining the resulting behavior of the matrix fluid. This procedure allows for the prediction of
the effective properties of the medium including longitudinal elongational, in-plane shearing,
transverse elongational and transverse shearing viscosities. Explicit expressions have been
developed for each of the effective viscosities for a Newtonian matrix fluid. Table 1.1 shows a
summary of these results in terms of fiber volume fraction, f, fiber aspect ratio, L/D

(length/diameter), and matrix viscosity, rl.

A deficiency of the simple power-law constitutive relation for a shear thinning fluid is its
lack of a finite zero-shear viscosity. Most polymers exhibit a finite zero-shear viscosity. In a
recent paper [4], the author's introduced a constitutive relation which exhibits a finite zero-shear
rate viscosity and includes a temperature dependence into the relations for the effective material

properties. This development will be summarized in the following.

1.2 Development

The effective viscosities shown in Table 1.1 fail to capture all the characteristics exhibited

by polymer melts such as dependence on shear rate and temperature. Carreau [5,6] has introduced
the following empirical rheological model to describe the non-Newtonian behavior of such a fluid.

TI =_10 [1+ (_)2] (n-l)/2 (I.:)

Where _/is the rate of shear strain and the other terms are defined in the following. The onset of the

nonlinearity is determined by the time constant, _. It is clear from equation (1.1) that for (X _/)<<1

the viscosity becomes Newtonian. The power law exponent, n, determines the degree of
nonlinearity. The value of n=l corresponds to a Newtonian fluid, and as the exponent decreases
the fluid exhibits increased shear thinning.

It has been stated [7], that the influence of temperature on viscosity can be represented as follows:

E0 = 1]0AT ; _ = _kT

where the temperature shift factor, A T, is defined as:

A T = e-4frcro -1)

(1.2)

(1.2a)



Note, the temperatureshift factor asdefinedaboveis normalizedso that at a given reference
temperature,TO, theshift factorequalsunity.

Viscosity versusshearratedata for typical high performance polymer PEEK at 399°C is
shown in Figure 1.1. Figure 1.2 shows the temperature shift factor versus temperature for PEEK.
Equation (1.1) and equation (1.2a) were fit to the PEEK data thus determining the parameters as
follows:

1'10= 280 Pa-S, _. = 0.038 S, n = 0.787, _ = 6.56

Equations (1.1) and (1.2a) are compared with the experimental data in Figures 1.1 and 1.2.

Employing this matrix constitutive relation and the development presented in reference [3] it
is possible to derive new expressions for effective viscosities of the medium as follows:

2 2 2

1'111-- rioAT(1--l'l')f (L/D)2 [1+AT(1-_)2}'1" L 41-1.2(L/D) (X_I 1)2] (n-l)/2
(1.3a)

A_2 l(n-1)/2
I]22- 4q0AT 1+ '_--_ (_,_22) 2 (1.3b)

_t

](n- 1 )/2

rioAT(l+l..t) [ 1+ A'_(I+I a)2 (Z._,12)2J1112- _ L 41"t2
(1.3C)

ri 0AT [ 1+ A__'_(_, _23)2](n- 1)/21123 _ !-t I"t2 (1.3d)

where

It=l- f'_/_;F=
4 square array

2,Or_ hexagonal array

1.3 Results

Given the material descriptors and matrix properties as a function of temperature and strain
rate, equations (1.3a-d) can be utilized to predict the unique properties of the material. Figure 1.3
shows these predictions for the PEEK data discussed in the next section in conjunction with a

square array of 60 percent fiber volume content and a fiber aspect ratio of 104. The figure
illustrates the relative difference in the various effective viscosities. It is especially interesting that

the maximum Newtonian strain rate is lower for the fiber filled polymer than for the neat polymer.
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This is especiallyevident in the longitudinalelongationalviscositywhich beginsto exhibit the
shearthinningphenomenonat anelongationalstrainrateapproximatelythreeordersof magnitudes
lessthanthefluid's maximumNewtonianstrainrate.

Figure 1.4 showsthe effect of temperatureon thein-planeviscosity versusstrain rate.
Noticethatanincreasein temperaturedecreasestheviscositybut increasesthemaximumrangein
rateoverwhichNewtonianbehaviorisobserved.

SincetheCarreauparametersaredeterminedempirically,it is instructiveto studytheeffects
of varyingthevariousparameterson theeffectiveviscosityof thecompositesystem.Therefore,to
gaina betterunderstandingof thestrainrateandtemperaturedependence,aparametricstudyof the
Carreaumodelparameterswill bepresented.Only the longitudinalelongationalviscositywill be
illustratedsincethesamegeneraltendencieswill hold for all theviscositiesin equation(1.3). For
largeswainrate,it is clearthatthequantity(n-1)definestheslopeof theviscosityversusstrainrate
curveon alog-log scale.This is illustratedin Figure 1.5for valuesof thepower law term in the
range 0-1. Note that n=l correspondsto the Newtonian case. Using a log-log bi-linear
approximationfor theviscosity strainraterelation,anupperboundfor themaximumNewtonian
strainrateis

_N- 2_t (1.4)
AT(I-kt)(L/D)k

Equation (1.4) shows that as the time constant increases, £N decreases. This effect of the time

constant on _:Nis illustrated in Figure 1.6. The influence of the fiber geometry on viscosity can

also be observed by studying equation (1.4). Increases in L/D will result in a decrease in the
maximum Newtonian strain rate for the fiber assembly. The temperature dependency on the
viscosity appears in the zero-shear rate viscosity and the time constant. As the temperature shift
factor increases, the zero-shear rate viscosity and the time constant decrease. This is illustrated in

Figure 1.7 for various values of the temperature shift factor.

1.3.1 Influence of Fiber Orientation on The Viscoities of Anisotropic Materials

The relationships for the material properties as presented above are valid for a system of

perfectly aligned fibers which coincides with the reference axes. Many times the fibers are off axis
to the loads and hence the reference axis. In this case the effective properties are of interest. Also

due to manufacturing and processing, the fibers are not perfectly aligned. The effective viscosities
for these two conditions will be studied in the following.

The effective viscosities for a medium consisting of collimated, long discontinuous fibers

suspended in a viscous matrix were examined in the last section. These results have shown that
the effective viscosities for such a system are highly anisotropic with anisotropy ratios which often

exceed 106 for fiber aspect ratios of 103 - 104. Given the extreme sensitivity to material anisotropy
of material properties transformed outside the principal material coordinate system, it is clear that
fiber orientation will have a great influence upon effective material properties. Two conditions of
fiber orientation must be considered. First, the condition where fibers are perfectly collimated but
do not coincide with the load direction and second, the condition where individual fibers are

misoriented with respect to the principal material direction. In the latter case, misorientation of
individual fibers might have occurred during the manufacturing step, while in the former case the

inability to insure that the test directions and material principal directions coincide could lead to
measurement of properties which could differ greatly from actual values.
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1.3.2 Transformed Properties

For orthotropic viscous materials in plane stress with the principal material designated "1",

the principal viscosities are:

1"111 :

1'122 :

1'112 :

longitudinal elongational viscosity

transverse elongational viscosity

inplane shearing viscosity

The apparent or transformed properties at any angle, O may be expressed in terms of the principal

viscosities and the angle, 0 through the standard transformation.

111'1(0)/1'111 = [ m4 + (1'111/1'1 12-1) m2n2 + (1111/1122)n4] -1 (1.5)

112P2(0)/1"]22 = [ m4 + (1122/1112--1122/11 11) m2n2 + (1'1"!22/1'1l l)n4] - 1 (1.6)

111'2(0)/1112 = [(m2-n2) 2 + 4(21"112/1'111+1"! 12/1122)m2n2] - 1 (1.7)

where m = cos 0 and n = sin 0.

Results for 11{1, ri2_, and 111_ are shown in Figures 1.8-10 where estimates for 1"111, 1'122,

and 1"112are taken from reference [1] as shown in Table 1.2. Estimates for the viscosities could
also be obtained from the relations given in equations (3a-3c). The dependence of the principal
elongational viscosity upon fiber aspect ratio (L/D) is .apparent in Figure 1.8. For systems with

L/D=104 the ratio of transformed elongational viscosity to principal elongational viscosity, r1{1/1111

is 10 .2 at 0=-1 °. Hence, fiber aspect ratios which correspond to actual material systems such as that

discussed in reference [8] yield highly anisotropic materials systems whose properties exhibit

extreme sensitivity to fiber orientation. A similar result for 1_2t2/1122 is shown in Figure 1.9 for

L/D=104. For the apparent inplane sheafing viscosity 11{2/1112, the maximum occurs at 0 --m/4

with a value of approximately 101 as shown in Figure 1.10. It is interesting to note that while both

the elongational viscosities varied over 10 o to 10 .6 for the range in orientation angle of 0 to x/2, the

inplane sheafing viscosity ratio only varied over 100 to 101 for LtD=104.

1.3.3 Ensemble Properties

Should the material system consist of an ensemble of elements (fibers) with varying
orientation, the expected value of the viscosities for the ensemble will be different from the values
obtained from equations 1.5-1.7. In fact, even with small misalignments the effective viscosities
may be drastically different. The effective viscosities will be bounded by average values as
determined by assuming constant stress or constant strain. In the following, only the expected
values based on constant stress will be presented. This will illustrate the large changes in effective

viscosity due to small misorientations.
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To determine the expectedvalues of the viscosities, a distribution function, _(0),
representingthefiberorientationis determinedandaweightedaverageof thecomplianceroan'ixis
calculatedasshownbelow.

If re/2(11ij)l_ = I_i_(O)¢(O)dO

L"-rd2

-1

(1.8)

where the compliance terms, []_(0), are defined as follows:

131'1= m4/1111 + (--1/1111+1/1112) m2n2 +/'/4/1122 (1.9)

132'2 = n4/1111 + (-1/1111+1/1112) m2n2+ m4/1122 (1.10)

_,6 = m4/1112 + (8/1111+4/1122-2/1112) m2n2 + r14/1112 (1.11)

If the fibers are assumed to be uniformly distributed between -----01, the normalized probability

density function is

(_ = O, 0 > 01 and 0 < -01 (1.12)

= 1/201 ,-01 -< 0 -< 01

Combining equations (1.8) through (1.12) yields the expected value of the viscosities based on the
compliance matrix:

(1111)/1111 = 320111221112/[(21"!221112+311111112+11111122) 401

-I- (11121122--11111112) 8sin201 + (211221112"t"11111112 -11111122) sin401] (1.13)

(1122)/1122 = 320111"! 11111#[ (211221112+311111112+11111122) 401

+ (11111112-11221112) 8sin201 + (211221112+11111112-11111122) sin401] (1.14)

(1112)t1"112 = 80111111122/[(11111122"4-211121122%11111112) 401

+ (11111122--211121122--11111112) sin401 ] (1.15)

Consider the expected value of the principal elongational viscosity (1"111) for a fiber

ensemble with equal probability of fiber orientation between +01. The expected viscosity for a

range of values of 01 are shown in Figure 1.11. These results indicate that the compliance

method mirrors the significant sensitivity to orientation shown for 11{1 in Figure 1.8. Therefore for

small misalignment of the fibers the apparent viscosity is greatly reduced.

11



Fortheexpectedvalueof thetransverseelongationalviscosity (ri22)of theensemble,thereis little
dependenceon themisorientationasshownin Figure1.12. Similar resultsfor theexpectedvalue
of theshearingviscosity(r112)areshownin Figure 1.13.

1.4 Conclusions

Relations for predicting the effective viscosities of an aligned discontinuous fiber filled
fluid developed in [1-3] for Newtonian and power law fluids have been extended to include zero-

shear viscosity and temperature dependence. This was accomplished by describing the matrix fluid
viscosity with a Carreau model. Using experimentally determined viscosity data for PEEK,
effective properties of a fiber assembly were predicted. It was shown that the introduction of
fibers into the fluid can dramatically decrease the maximum Newtonian strain rate. This is critical

when determining a maximum strain rate for which Newtonian behavior is expected. The effect of
the Carreau model parameters on the elongational viscosity were demonstrated for a wide range of
values.

In addition to long discontinuous fiber systems, the relationships presented in this chapter,

all but the longitudinal elongational viscosity prediction, are valid for continuous fiber systems. It
should be kept in mind that these relations provide insight into the relative magnitudes of the

predicted properties, the effect of material descriptors, and the degree of anisotropy of the medium.

The influence of fiber orientation upon the effective viscosities of a medium consisting of
discontinuous fibers suspended in a viscous medium have been determined for the conditions of

perfect collimation and off-axis orientation, as well as ensemble misorientation. In the former case
extreme sensitivity to fiber orientation was exhibited by all the viscosity terms corresponding to

materials with aspect ratios of 103 - 104. Reduction in the ratio of apparent elongational viscosity

to principal elongational viscosity of 10 .2 for an orientation of 1° was observed.

The compliance matrix was utilized to predict the expected values for the anisotropic
viscosities of the medium consisting of an ensemble of misoriented fibers in a viscous medium.
This averaging approach yielded results for the expected values of viscosities which display the
same tendencies as the properties for the off axis perfect collimation results. It was shown that
small misalignments in the fibers could greatly decrease the longitudinal elongational viscosities
without corresponding effects on the transverse elongational and inplane shearing viscosities.
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Table 1.1

Summary of Viscosity Predictions [3]

Term

T] 12/T1

 Wrl

q22/T]

Newtonian Fluid

I

I

4

Table 1.2

Plane Stress Orthotropic Viscosities

Micromechanics Predictions (1)

Volume fraction : 0.6 Tl:l/rl = 2.08 (L/D) 2

Packing geometry • square array _12_ = 4.47

'q22_ = 31.8
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2.0 The Effect of Material Heterogeneity in Curved Composite Beams

2.1 Introduction

Manufacturing processes such as sheet forming and stretch forming can be used to produce

several types of composite parts [9, 10]. The use of a long discontinuous fiber material system
allows for material stretching over complex curvature parts while maintaining a high percentage of
the continuous fiber material properties [11]. Combination of these forming methods and material
system allows the production of complex structures such as curved beams as shown in Figure 2.1.
The microstructure of a curved beam is sensitive to the production method and gradients in material

properties are expected in both sheet formed [12] and stretch formed [10] beams. Schematic
examples of two types of heterogeneity are shown in Figure 2.2; analysis of these types of beams
can be useful in determining the effect of such property gradients on the overall performance of a

given beam.

Two separate analyses are conducted. The first uses a closed form stress potential

approach to investigate the effect of radial heterogeneity on curved beams loaded in pure bending.
The stress state is found for beams which can have several different geometries including I, J, T,

and rectangular cross-sections. Material properties can be specified independently for each section
of the beam, i.e., flange and web can have different properties. Each section of the beam is treated
as an individual curved rectangular beam loaded in pure bending and with a constant distributed
load on the curved surfaces. Superposition is used to combine the results of the individual sections
into the total beam solution. Details of the analysis are provided and results are shown for

comparison with known solutions.

The second analysis technique uses a Rayleigh-Ritz approach to solve the minimum
potential energy equation for several curved beam problems including pure bending and a beam
with a uniform distributed load. This is an approximate solution which uses an assumed series

formulation of the displacement field. The advantage of this method is that it allows for any type
of material heterogeneity and can be used to solve other relevant problems such as tensile loaded
beams or beams with geometric stress concentrations such as cutouts.

Analysis results are compared to solutions found by using mechanics of materials and finite
element methods. The mechanics of materials solutions are useful for comparing results for beams

with homogeneous material properties and the finite element analysis is necessary to solve the

problem when the beam has heterogeneous material properties. The first type of analysis has been
incorporated into a design tool for analyzing curved beams loaded in pure bending. A wide range
of geometric parameters and material properties can be analyzed with relative ease. The second
type of analysis is being developed so that a similar tool can be used to analyze curved beams with
different loading conditions or geometric configurations.

2.2 Stress Potential Solution Procedure

The state of stress and swain is determined for a curved beam loaded in pure bending which

has any of the following cross-sections; I-beam, T-beam, J-beam, etc. The solution is found by
separating the beam into three sections; each with an applied bending moment and distributed load.
A stress potential approach is used to solve the two-dimensional problem in each section. The
constitutive relations take the form;
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Ei = Otij r -n Oj ; i, j = 1, (2.1)

where e is the two-dimensional strain vector in polar coordinates, o is the corresponding stress

vector, r is the radial position, and 0qj are the base values of the elements of the compliance
matrix;

12,11= an/Ell , _12 = ot21 = -v12 an/E12 , _22 = an/E22 , (2.2)

and a is the inside radius of the beam. The degree of radial heterogeneity, n, allows for a property

gradient in the radial direction of the beam. A positive 'n' defines a beam which is stiffer with
increasing radius, a negative 'n' defines a beam which is more compliant with increasing radius
and homogeneous material properties are specified by letting n = 0. Base values for the material
properties are defined along the inside radius of the beam. This constitutive relation, together with
equilibrium and compatibility can be combined to form the equation;

V n ¢ = 0, (2.3)

where ¢ is the stress potential. We can solve for ¢ by applying boundary conditions to the two-
dimensional curved beam as shown in Figure 2.3; the tractions along the straight edges are
represented by a bending moment, M, and the curved surfaces are traction free. The resulting
stresses are [13]:

M [c t - c n+l- ' cS_c[ pS-1O r = _ + cn+l " cS pt-1 1cS- ci- + pn ,
(2.4)

M [c t - c n+l- 'cS- _-_ S pS-1 +GO=

cn+l _ C s

C s - C t t pt-1 + (n+l) phi,

where,

g

(C t-@+l)( 1- Cs+l) S

C s - C t S+--l" +
(cn+l-cs)(1-ct+l) t +(n+l)(l_cn+2)

Cs . Ct t+----1 _ '

(2.5)

(_) 1( _ ) (Otll+nOtl2,=_ n+ n 2+4Tn , Tn- , (2.6)
_22

and h is the beam thickness, c is the ratio of the inside radius to the outside radius (c = a/b), and p

is the ratio of radial position to outside radius (p = r/b). Notice that the solution is axisymmetric

and Ore = 0 everywhere.
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Another loading condition that produces an axisymmetric state of stress in a curved beam is
the classic Lame's problem, which is a circular cylinder with an internal and external pressure.

The stresses in such a cylinder are [13]:

ps-1 _ pt-1 c t 9s-1 _ c s pt-1
_r=-Pc +Q

C s - C t C s - C t

s pS-1 _ t pt-1 s c t ps-1 _ t c s pt-1
a0 =-Pc +Q

C s - C t C S - C t

(2.7)

where P is the internal pressure, Q is the external pressure, and all the other variables are the same
as in the pure bending case. When looking at a section of the cylinder, as shown in Figure 2.4, the
straight edges are not traction free; the tractions can be represented by an end moment and an end
load analogous to hoop stress found in a thin walled cylinder. The end load, L, is determined by
integrating the tangential stress across the depth of the beam and the end moment, ML, is found by
integrating the tangential stress times the radius across the depth of the beam.

2.2.1 Superposition of Two-Dimensional Solutions

Now that the solution for the stresses has been established in each individual section under

the general loading shown in Figure 2.5, superposition is used to find the solution of the entire
beam. The curved I-beam, for example, loaded with a bending moment, M, is separated into three
sections with the following bending moments and distributed loads: M1, M2, M3, P2, P3, Q1, and
Q2, as shown in Figure 2.5. Applying superposition; the sum of the moments on the section ends

must be equal to the applied moment, M:

M1 + M2 + M3 + ML1 + ML2 + ML3 = M (2.8)

where M1, M2, and M3 are bending moments applied at each section end and ML1, ML2, and ML3
are the bending moments due to the applied distributed loads QI, P2 and Q2, and P3, respectively.

Six more equations are necessary to solve this problem. The sections must be in

equilibrium where they meet, therefore the radial loads must be equal resulting in the following
relations:

P2 h2 = Q1 hi and P3 h3 = Q2 h2 (2.9)

where hi, h2, and h3 are the thickness of each section and the P's and Q's are the applied

pressures. The final equations are found by requiring the continuity of radial and tangential
displacements at the section boundaries,

Ur(1) = Ur(2), at r = b Ur(2) = Ur(3), at r = c

, = u0(3), atr=c. (2.10)u0(1) = u0(2) at r = b u0(2)
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Thesesevenequations(2.8) - (2.10)are solved simultaneously for the seven unknowns; M1, M2,
M3, P2, P3, Q1, and Q2. The stresses, strains and displacements can be found in each section

based on these loading conditions.

2.3 General Heterogeneity Stress Analysis

A Rayleigh-Ritz stress analysis method is used to solve several problems including pure
bending of a curved beam and a uniform distributed load on beams and rings with various cross-
sections. This method uses an assumed displacement field which contains unknown parameters

and satisfies the boundary conditions of the specific problem of interest. The displacement field is
substituted into the principal of virtual work, resulting in a system of linear equations which is then
solved for the unknown parameters. Displacements, strains, and stresses can be determined when
these parameters are substituted into the assumed displacement field. This method allows for the
calculation of stresses in components without the need for elaborate pre- and post-processing;
which is especially convenient for parts with complex heterogeneous material properties and
geometry. The solution procedure is outlined below and then two types of problems are solved
using different assumed displacement fields.

2.3.1 Rayleigh-Ritz Method

The principle of minimum potential energy states that of all displacement fields which
satisfy the prescribed constraint conditions, the correct state is that which makes the total potential
energy, rI, of the structure a minimum [14]. The potential energy of the structure is the sum of the
elastic strain energy, U, and the potential of the external forces, V. The minimum potential energy
is found by setting its first variation equal to zero, 8 rI = 8 U + 8 V ---0; which can be expanded to
the following expression for a two-dimensional body:

JS{eIT{N} dm- I_{u}T{t} dS =0. (2.11)
A S

where,

{E} = strain vector
{ N } = stress resultant vector

{u} = displacement vector
{t} = applied surface traction vector

and A is the in-plane area of the two-dimensional structure and S is the curve which defines its
boundary. We assume the following form of the displacement field;

N M N M

Ur = Y. ,Y_,qj fl(r,k) gl(J,o) , u0 = Y_ Y- qM+k f2(r,k ) g2(J,o) '
j=O k=l j=O k=l

(2.12)
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whereUrandu0arethedisplacementcomponentsandqkareunknownparameters.The functions

fl, f2, gl' andg2arechosensothatthedisplacementsmatchsymmetryandboundaryconditionsof
theproblem. The lengthof thetwo seriesaredeterminedby theinput variablesN andM. The
displacementscanbewrittenin matrixform;

Ur } N{u} = u0 = _ [Uj] {qj} ,
j=0

(2.13)

where{qj } is avectorcontaining2M unknownparametersand[Uj] is a2 x 2M matrixof theform:

[Uj] =[ fl(r'l) gl(J'0) "'" fl(r'M) gl(J'0)

1 0 ... 0

The strain vector is obtained by substituting equations

displacement relations for polar coordinates:

°.. 0

f2(r,1) g2(J,o) ... f2(r,M) g2(J,O)

(2.14)

(2.13) and (2.14) into the strain-

{e} = e0 =

_'r0

b

&

1
r

lb

r _0

0

1 b

r _0

1

& r

m

N

{u} = Z
j=0"

[Hi] {Clj} , (2.15)

where [Hi] is a 3 x 2M matrix which has the following form;

[f'l (r,1) "'" f'l (r,M)] g 1 (j,0)

[lfl(r,1 ).. If (r,M)]"r 1 gl (j'0)

[lfl(r'l)"" rllf (r,M)] gl(J,0)

°°o 0

[_f2(r,1) ... lf2(r,M)] g2(J,o)

f2(r,1) f2(r,M)_
{[f'2 (r'l)- r ]''" [f'2 (r'M)- r ]}g2 (j'O)-

(2.16)

31



Differentiationwith respect to r is denoted by ( )' and differentiation with respect to 0 is denoted by

(). The stress resultant vector is determined by applying the stress-strain relations;

fNr}[A1A12Am6]{ r1{N} = NO = A12 A22 _ e,0 ,
Nr0 A16 A26 _rO

(2.17)

where All, A12, etc., are the elements of the material stiffness matrix and can be defined as
constants or as functions of position. The stress resultant vector can also be written as;

N

{N} = [A] {e} = Y. [A] [Hi] {qj}.
j=0

(2.18)

The principal of minimum potential energy is rewritten by substituting equations (2.13) - (2.18)
into equation (2.11) which yields the following:

N N N

I Y. E [Hj]T[A][HI]{ql} dA - I Y.[uj]T{ t} dS =0,
A j=0 t--0 Sj=0

(2.19)

which can be written more compactly as:

[K] {q} = [T], (2.20)

where {q} is the vector of unknown parameters.The global stiffness matrix and the load vector,
[K] and [T] respectively, are defined below:

N N N

[K] = I Y_ Y- [Hj] T [A] [HI] dA and ['17 = _ Y. [Uj] T {t} dS.

A j=0 _0 Sj=0

(2.21)

The limits on the area and surface integrals are def'med by the geometry of each problem to

be solved. The applied surface traction vector {t} is defined by the applied loading conditions, and
all the other matrices are defined by the assumed displacement field and the material properties.

Solutions are found for two problems requiring different assumed displacement fields.
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2.3.2 Solution Procedure for Problems With Two Planes of Symmetry

Two different problems involving two-dimensional plates with two planes of symmetry are
solved using the same assumed displacement. The In'st problem solved is a circular ring loaded by
uniform distributed loads on the inner and outer radii as shown in Figure 2.4; Highlights of this

analysis are shown below. The second solution is for a biaxially loaded notched plate; the details
of this analysis are presented by Russell, [15]. The following form of the displacement field is
assumed,

N M N M

k ..2(k-M)+ 1 qM+k r2(k-M)+ 1
Ur = _ _ ,aj -- cos(2j0), u0= _ Y_ --" sin(2j0),

j=o k=l j=0 k=l

(2.22)

k
where Ur and u 0 are the displacement components and qj are unknown parameters. This

displacement field satisfies symmetry conditions and, for the case of an isotropic circular ring
loaded by internal and external pressure, it converges to the exact solution with very few terms of

the series; j--0 and k=2. Substituting this equation into the principle of minimum potential energy,
equation (11), leads to a system of M(2N+ 1) linear equations which are solved simultaneously for

the unknown parameters, a..r.
-j

2.3.3 Solution Procedure for Problems With One Plane of Symmetry

Problems with one plane of symmetry such as a curved beam loaded in pure bending are

represented by Figure 2.3. The solution procedure starts with the assumed form of the
displacement field;

L N L M

[ 1(:)Ur= Y. X qPfn(r) +QI r lnr cos lO , uO= Y. Y_ Vpgm(r) Z(O),
l=O n=l l=O m=l

(2.23)

n m 1
where Ur and u 0 are the displacement components and ql' V l ' and QI are the unknown

parameters. The functions fn(r), gm(r) and Z(0) are defined as

{ )ie -0fn(r) = r 2(n-b0+l, gm(r) = r 2(m-M)+l, and Z(0) = sin 10 if 1 > 0 " (2.24)

These functions were chosen so that when L=0, N=2, and M=I, and the beam has isotropic

material properties, the displacements take the correct form as shown below which is found from
the closed form elasticity analysis described in the previous section;
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1_+ q2r + q3r Inr u0 = o.4 r 0 (2.25)Ur=ql r ' "

The beam theory assumption that plane sections remain plane can always be maintained if the input
variables are set so that M = 1 and L = O. Adding more terms allows the evaluation of beams
which might not follow the beam theory assumption such as in the ease of beams with

heterogeneous material properties. The displacements can be written in matrix form;

Ur } L{u} = = Z [UI] {ql} , (2.26)
u e

1=0

where {ql} is a vector containing N+M+I unknown parameters and [U1] is a 2 x (N+M+I) matrix
of the form;

f1 C ... fn C r lnr C 0 ... 0
[U j] =

0 ... 0 0 gl Z "'" gm Z

(2.27)

{ql} =[" ql qN Q1 1 M IT (2.28)1 "'" 1 Vl "'" v 1 '
[_ _l

and C = cos( _ 10 ). Applying the strain-displacement relations, equation (2.15), we find;

{el= e0 = [Hdlqll,
Yr0

(2.29)

where

[HI] =

-(f'l "'" f'N)C (l+Inr)C

(fl "'" fN) C/r In r C

_(fl ""fN) C_Jr ln r _2 [

(o...o)

( gl "'" gM) _/r

(rg'l - gl) ...(rg'M - gM)] Z/r

(2.30)
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Thestressresultantvectoris foundby applyingthestress-strainrelationsasgivenin equation
(2.18);

L

{N} = [A]{e} = Y. [AI[HI] {ql}.
1=0

(2.31)

The global stiffness matrix is found by substituting equations (2.26), (2.29), and (2.31) into the

expression derived from the principle of Minimum Potential Energy, equation (2.11);

II) IO
L L

[Kjl] = X Y- _ f [Hj] T [A] [HI] r dr dO.

j=o 1=0 0 ri

(2.32)

For all values ofj and 1, each [Kjl] is an (N+M+I) by (N+M+I) matrix since [Hj] T is a (N+M+I)
by (3) matrix, [A] is a (3) by (3)-matrix and [HI] is a (3) by (N+M+I) matrix. [Kjl] is partitioned
in to nine sections which have the dimensions as shown below.

[NxN] [Nx 1 ] [NxM] t[Kjl] [ 1 x N ] [ 1 x 1 ] [ 1 x M ] 1
[MxN] [Mx 1 ] [MxM]

(2.33)

Each of the nine sections are defined by a single express.ion. The radial integrals found in equation

(2.32) are simple functions and exact solutions are found. The tangential integrations can be quite
complex and are solved numerically using Simpson's Rule.

2.4 Results

The superposition model, which is used to find stresses and displacements in a curved
beam loaded in pure bending, has been verified by comparing results with mechanics of materials
and finite element analysis solutions. Several example problems of isotropic beams having I-, T-,
or rectangular cross-sections have been examined and the difference between the superposition and
mechanics of materials solutions is less than 1% for all cases. Two-dimensional finite element

analysis is used to compare results for a curved heterogeneous anisotropic J-beam. The
heterogeneity is introduced into the finite element analysis b.y varying the material properties in
each element of the model. Table 2.1 compares the superposluon results with those found using

finite element analysis for a beam with the following dimensions: inside radius is 95.0 cm, the
outside radius is 101.3 cm, the lower flange is 1.24 cm wide, the upper flange is 2.26 cm wide
and the web and flanges are 0.15 cm thick. The flanges are incorporated into the finite element

model by setting the thickness of the inside and outside row of elements accordingly. Three
different constitutive relations are examined; the degree of radial heterogeneity, n, is set equal to -2,
0, and +2, where an 'n' value of -2 corresponds to a beam which is approximately 20% stiffer on
the inside radius, an 'n' value of +2 is roughly equivalent to a beam which is 20% stiffer on the
outside radius, and an 'n' value of zero means the beam is homogeneous. The finite element

analysis results are within 3.4% of the superposition results as shown in Table 2.1.
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Table 2.1

Comparison of Superposition and Finite Element Analysis Results
for a Heterogeneous, Anisotropic J-Beam Loaded in Pure Bending

Solution

Procedure

F'F_A

Superposition

% Difference

FEA

Superposition

% Difference

PEA

Superposition

% Difference

Degree of Maximum

Heterogeneity Displacement.

(n) (cm)

-2 1.798 E-4

-2

0

0

2

2

l_¢[flgimum

Stress

(kPa)

35.44

]_¢Iinilnunl

Stress

(kPa)

-24.13

1.831 E-4 35.65 -24.41

1.8 % 0.6 % 1.1%

1.659 E-4 34.54 -24.61

1.717 E-4 34.75 -25.03

3.4 % 0.6 % 1.7 %

1.582 E-4 33.72 -25.30

1.610 E-4 33.85 -25.58

1.7 % 0.4 % 1.1%

The validity of the model has been demonstrated and the effect of radial heterogeneity on
beam performance can now be determined. The maximum tangential stress and maximum
displacement versus heterogeneity are found for a curved J-beam loaded in pure bending. These
maximum values are plotted for several different beam geometries in Figure 2.6. The degree of
heterogeneity is varied from -2 to +2 corresponding to approximately a 20% decrease or 20%
increase in stiffness, respectively. The effect of material heterogeneity is highly dependent on the
beam geometry which is characterized by the average radius to depth ratio, R/t; where R = (ri +

ro)/2 and t = ro - ri. Heterogeneity has a considerable effect on the maximum tangential stress in
beams with a small curvature, R/t = 1, while it has virtually no effect on the stresses in beams with
a large curvature. The maximum displacement is affected by heterogeneity for all beam geometries
considered, but, the effect is again seen more drastically in beams with small curvature.

This analysis procedure can be used as a simple tool for preliminary design of curved
beams. Given the basic beam dimensions, i.e., inner and outer radii, a range of values for all other
dimensions can be selected. Flange widths and thicknesses can be varied independently as well as
the material properties and degree of heterogeneity in each section. The results of a sample
preliminary design are presented in Table 2.2. Two types of beams are analyzed; a J-beam with an
R/t ratio of 14.5 and a channel beam with an R/t ratio of 6.7. The table shows the change in
maximum and minimum tangential stress as well as the maximum deflection for a range of several
variables. These variables are the degree of radial heterogeneity which is varied from -2 to +2 for
isotropic and unidirectional beams, the inner flange thickness, hi, which is varied from 0.23 to
2.26 cm, and the web thickness, h2, which is varied fi'om 0.10 to 0.25 cm.
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BeamType

J-Beam
J-Beam

J-Beam

J-Beam

C-Beam

C-Beam

Table 2.2

Material

Uni-Directional

Isotropic
Uni-Directional

Uni-Directional

Uni-Directional

Design Study Results

% Change in
Max. Stress

6.7

6.7

49.7

33.9

16.5

Variable IParameter

n = -2 to +2

n = -2 to +2

h 1 =.23 to 2.26

h2 =. 10 to .25

n = -2 to +2

n = -2 to +2

hi =.38 to 1.14

hl =.38 to 1.14

Isotropic 16.3
C-Beam Uni-Directional 26.2 10.1 18.7

C-Beam Isotropic 26.1 10.2 19.6

% Change in % Change in
Min. Stress Max. Deflection

6.1 12.8

6.1 12.8

20.1 37.4

26.7 31.1

14.3 28.4

14.0 28.2

The Rayleigh-Ritz technique is used to solve the problem of a curved beam loaded by
internal and external pressure. Solutions are compared with exact results for isotropic and

axisymmetric anisotropic beams [13], and the difference is within 0.1%. This solution technique
is also verified by solving the problem of an infinite plate with a centrally located hole loaded only
by an internal pressure where the principle material directions are along the Cartesian axes. This
problem is modeled by letting ri = 2.54 cm, ro = 76.2 cm, Pi = 1 Pa, and Po = 0 Pa The stress
concentrations found at 0 = 0 ° and 90 ° are within 1% of those found by Lekhnitskii, [13]. A

carbon reinforced thermoplastic composite ring with an inner radius of 15.24 cm and an outer
radius of 20.3 cm is analyzed for two different fiber arrangements; one with tangentially oriented
fibers and the second with fibers aligned in the x-direction. The stress distribution is axisymmetric

in the ring with tangentially oriented fibers as shown in Figure 2.7a while the ring with straight
fibers in the x-direction has a slight stress concentration at approximately 0 = 45 ° as shown m

Figure 2.7b. These results are evidence that the tangential heterogeneity due to non-axisymmetric
fiber distribution can effect the stresses in a curved beam loaded by internal and external pressure.

The Rayleigh-Ritz technique is also used to solve the problem of a curved beam loaded in

pure bending. Results for isotropic beams compare to within 1% of the elasticity solutions.
Results for anisotropic beams with the principle fiber directions along the polar axes also compare
to within 1%. The results for beams having heterogeneous material properties are currently being

compared to finite element analysis solutions.

2.5 Concluding Remarks

A closed form elasticity solution can be used to solve for the stresses and displacements in

a heterogeneous anisotropic curved beam loaded in pure bending. The elasticity analysis, based on
the superposition of several two-dimensional solutions, provides results which are in very good

agreement with those found from mechanics of materials and finite element analysis. The
heterogeneity is introduced into the model by defining the material properties as an exponential
function of the radius, while the actual heterogeneity due to fiber realignment during forming can
be determined using enhanced ultrasonic C-scanning techniques.

The effect of radial heterogeneity on curved beams loaded in pure bending depends on the
geometry of the beam. The maximum stress and deflection in beams with a small average radius to
depth ratio is significantly effected by heterogeneous material properties. A beam whose stiffness
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decreasesby 20% from the inside to outsideradius (i.e., n -- -2), shows a 28% increase in the
maximum tangential stress and a 75% increase in the maximum deflection when compared to a
homogeneous beam if R/t = 2, but only a 1% and 4% increase, respectively, if R/t -- 10. It is
unlikely that radial heterogeneity effects the performance of most beams used in transport aircraft
fuselage applications since they have an R/t > 10; but this heterogeneity could play a part in the

performance of beams used in other applications.

The superposition elasticity analysis has been incorporated into a computer program which
can be used for design studies of curved beams. Several of the beam parameters can be varied to
determine their overall effect on maximum tensile and compressive stresses, as well as maximum

deflections. The variable parameters are the thickness and depth of the flange and web along with
their material properties and degree of radial heterogeneity. This provides a quick and easy way to
perform initial beam sizing calculations.

The Rayleigh-Ritz analysis can be used to solve problems with both radial and tangential
heterogeneity. The importance of this ability is demonstrated by the results of the pressurized ring
problem. Isotropic and axisymmetric anisotropic rings have an axisymmetric state of stress when
pressurized. Rings with tangential heterogeneity however, do not have an axisymmetric state of
stress when pressurized. Stress concentrations develop which are a function of both the material
properties and the heterogeneity. This type of analysis is currently being used to study the effect of
heterogeneity on curved beams subject to several different loading conditions; pure bending,
internal and external pressure, and end loading. Geometric heterogeneity, such as a notch or cut-
out, is also under investigation. Future work includes applying an appropriate failure criterion to
the results of these analyses and comparing with experimental data.
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Figure2.1: ThermoplasticCompositeCurvedBeam

Figure 2.2: Different Types of Material Heterogeneity
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Maximum Tangential Stress Vs. Heterogeneity
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Loaded by an Internal Pressure, Pi = 1 Pa.
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3.0 Structural Testing of Curved Composite Beams Made of Long

Discontinuous Fiber Thermoplastic Composite

3.1 Introduction

An experimental investigation is conducted to determine the failure mechanisms of the
curved J-beams described in the appendix. There are no ASTM standard experimental procedures
for testing curved beams but some trends are found in the literature review [16-21]. Rich and
Lowry [16] test curved I-beams in a fixture which imparts a combined axial load and bending
moment. Llorente, et al., use similar loading conditions to test curved channel sections [20].
Typical design loads for an aircraft fuselage structure are presented in Figure 3.1. Loading
conditions for three different design constraints are approximated with a combination of an applied
axial load, bending moment, and shear load [22].

A fixture was designed and developed for testing the LDb "rM J-beams used in this study.
Two different gage lengths were tested under loading conditions similar to the '3.75G' design
constraint shown in Figure 3.1, where the bending moment is four times the axial load. Failure
mechanisms are discussed and load versus strain data is compared to theoretical predictions.

3.2 Experimental Procedure

The outer arc length of each beam is 40.64 cm and the inner arc length is 38.1 cm with a
web depth of 6.50 cm. The end of one of the beams was damaged during test preparation and the
damaged section was removed. The outer and inner arc lengths of this shortened beam are 30.48
cm and 28.58 cm, respectively. This beam is referred to as the 'short beam' for the remainder of
this discussion.

Load is transferred to the beams through a clevis with a 1.27 cm pin. End tabs are attached
to both ends of each beam to help distribute the load more evenly. This reduces the chance of
beam failure in the highly stressed area near the load pin. Two end tab designs are used for these
experiments. The first end tab design uses a 5.1 x 6.4 cm rectangular block of aluminum on each
side of the web. The tabs are 0.95 cm thick and bonded to the composite using HYSOL's
EA9309NA epoxy. A 1.27 cm bolt hole is drilled and reamed through the end tabs and the
composite 2.54 cm from end of the beam. This provides a 25.4 cm distance between loading
points in the 'short beam'.

The second set of end tabs is designed to impart a greater bending moment to the beam by
using an offset tensile load. These tabs are machined from T6061 aluminum and are also bonded
to the composite beam with epoxy. These tabs are also bolted to the beam with four 5 mm bolts
positioned as shown in Figure 3.2. The tabs extend radially from the beam and three 1.27 cm
holes are drilled and reamed to provide a choice of moment arms. A clevis is used to apply a pin
loading at either 7.6, 10.2, or 12.7 cm from the center line of the beam.

Rich and Lowry [16] found that supports were needed to prevent out-of-plane deflections
in the curved I-beams which they tested. They reasoned that the fuselage skin provides a similar
form of stability to the curved beams used as skin stiffeners in aircraft structures. A restraining
frame, was constructed and used to reduce the out-of-plane deformation in the J-beams tested
during this investigation. The frame consists of aluminum angle sections with steel cross
members. Adjustable aluminum spacers are attached to the steel cross members and tightened until
they just made contact with the beam. These spacers are 2.5 x 5.1 x 1.3 cm blocks located at
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differentpositionsalong the beam length depending on the end tab arrangement. Figure 3.3 shows
three different configurations used for the tests.

The parts are loaded in tension using an 1125 Instron with a 88.9 kN load cell. The load is
applied at a constant velocity of 1.27 mm/min. The strain is measured with gages at eight locations
across the depth of the beam half-way between the end tabs as pictured in Figure 3.4. Two gages
are placed in the center of the outer flange on the outside surface. One gage is oriented tangentially
and the other gage is oriented in the transverse direction. Two gages are placed on the inner flange
and oriented in the same manner as the outside flange. The last two sets of gages are positioned on
the web 6.4 mm from the flanges. Each of these sets has one gage oriented radially and the other
is oriented tangentially.

3.2.1 Initial Tests

The first test was conducted with the 'short beam' and the smaller end tabs which were

loaded through the center of the web. This configuration is shown schematically in Figure 3.3a.
This was one of the 'J2' beams and its' mechanical properties are defined in the appendix. The test

was started and initially there was no apparent deformation or accoustic emissions. A loud pop
was heard when the load reached 9.78 kN and another very loud cracking sound occurred at 12.45
kN. The end tabs popped off at this point, the test was stopped, and the specimen was unloaded.

No damage was visible in the beam and the tabs on the bottom end were still intact. A
visual inspection of the top end of the beam showed that none of the epoxy was left on the
composite. Suspecting a poor batch of epoxy, the beam surface was resanded and degreased and
then the end tabs were rebonded.

The test was repeated and no loud sounds were heard until the load reached 34.8 kN. The
top end tabs had failed again and some tear out occurred at the bolt holes. There was no apparent
damage to the composite and no epoxy remained on the beam; but, a 22.2 kN increase in load had
been obtained.

This procedure was repeated one more time and the epoxy failed before the composite
again. Slight clicking noises were hear occasionally until the load reached 30.2 kN at which time a
loud bang was heard. Another even louder bang occurred at 32.0 kN which corresponded to the
epoxy failure.

3.2.2 Additional Tests

This second set of end tabs were designed to increase the moment in the test section of the
composite for a given applied load. These tabs can be attached to the beam two ways; the first
imparts a relative compressive load on the inside edge of the beam when loaded in tension as
shown in Figure 3.3b and the second imparts a relative compressive load on the outer edge of the
beam as shown in Figure 3.3c. The same 'short beam' was next tested in the configuration which
applies relative compression to the inside edge. The load was applied with the same Instron and
88.9 kN load cell and at the same rate 1.3 mrn/min. The beam tried to deform out-of-plane but the
restraining fixture held it in place. The beam failed at an end load of 9.33 kN and an approximate
end moment of 949 J. The failure occurred on the inner flange, next to the end tab about 3.8 cm
from the end of the beam. Delamination was seen along the inner flange at this point, see Figure
3.5, so the crosshead was stopped and the beam was unloaded. A second failure occurred

approximately 5 seconds after the initial failure while the beam was being unloaded. This failure
started in the inner flange about 10.8 cm from the end of the beam and propagated halfway through
the web. The beam appeared to twist out-of-plane as this failure occurred.
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The same test configuration was used next to test one of the long 'J2' beams. Low level

popping noises started to occur at about 4.6 kN and continued sporadically until a loud pop was
heard at 9.7 kN. The load was still increased until another loud cracking sound was heard and the

beam delaminated along the inner flange next to the top end tab. This occurred at an end load of
10.0 kN and an approximate end moment of 1.02 kJ. The delamination did not propagate past the
end tab. A second failure occurred 7.6 cm below the first failure while the beam was being
unloaded. This failure occurred at an end load 7.3 kN and appeared to be a torsion failure. These
failure mechanisms are similar to the short beam failure modes shown in Figure 3.5. The load

versus strain curves for the inner flange of both the long and short beams are shown in Figure 3.6.
The outer flange load-strain curves are shown in Figure 3.7.

One of the 'J' beams was tested in the configuration which applies a relative compressive

load to the outer flange as shown in Figure 3.3. This long beam was tested and slight pops could
be heard after the load reached about 1.8 kN. The beam started to straighten at about 4.0 kN, the

frequency of the popping noises increased at about 7.6 kN, and it failed at an end load of 10.2 kN.
This failure started at one of the 5 mm bolt holes in the upper end tab and propagated across the

web at a 45 ° angle. Another crack propagated out of this same bolt hole into the inner flange as
shown in Figure 3.8. The damaged end of this beam was cut off so that the remaining piece had
the 'short beam' dimensions. This beam was tested in the same configuration and failed in almost
the same manner. Cracking sounds started to occur at 8.1 kN and the beam failed with a loud
crack at an end load of 12.2 kN and an end moment of 48.9 kN. The failure mode was identical to

that of the long beam. The load-strain curves for these beams axe shown in Figure 3.9.

3.3 Theoretical Predictions

The test sections of the beams loaded in configurations 2b and 2c are modeled using f'mite
element analysis. The loading conditions used are a combination of axial tension and pure

bending. The end tabs used in the experiments provide a 10.2 cm moment arm; therefore, the
boundary conditions applied to the model are a unit end load, P, and an end moment, M = 4P.
Configuration 2b is modeled with a negative moment which applied a relative compression on the
inner edge and configuration 2c is modeled with a positive end moment. Symmetry conditions at
the center line are used in the finite element analysis. The flanges are approximated by assigning
the actual beam dimensions to the inner and outer rows of elements. The inner row of elements
have a thickness of 1.24 cm, the outer row of elements have a thickness of 2.26 cm, and the web
elements have a thickness of 1.52 mm.

The t-mite element analysis results are obtained for a beam with the elastic rnoduli of the J2
laminates described in the appendix. The tangential stresses on the inner and outer flanges along
the center line of the beam are recorded. This corresponds to the location of the inner and outer
sets of strain gages. The tangential stress on the inner flange of the short beam loaded in bending

is (<_0)IF = -5.3M, where M is the magnitude of the applied bending moment. The tangential

stress on the outer flange is (ff0)0F - 5.0M. The corresponding stresses for the same beam under

an applied axial load are: (a0)n: = 6.0P, where P is the applied axial load and (t_0)0F = 2.1P.

Therefore, the tangential stresses in the short beam under the combined loading case, where M =

4P, are (C0)0F = 22.1P and (ff0)iF = -15.2P.

The experimental values for the tangential stress in the two flanges are obtained using the
constitutive relation.

Gll = All81 + A12£ 2, (3.1)

46



wherethesubscript,1,correspondsto thetangentialdirection,thesubscript,2, correspondsto the

transversedirection,the strainse1ande2 are taken from the gage data and the laminate stiffness

properties, All and A12 are calculated from laminate data given in the appendix. The experimental
and theoretical stress versus load curves for the J2 short beam are shown in Figure 3.10.

The predicted stress values on the inner flange are very close to the experimentaUy
determined values up until a load of about 4.9 kN. The slope of the experimental curve changes at
this point, possibly due to the flange bending out of plane. The predicted stress values in the outer
flange are consistently about 22% higher than the experimental values. Both of these curves stay

linear throughout the entire test but with different slopes.

3.4 Discussion

The 'J2' beams were tested in configuration 2b, which imparts a relative compression on

the inner flange. These beams were identical except for their length and the longer beam failed at a
slightly higher load. They both failed in a two-step manner. The inner flange which was loaded in
compression started to bend out of plane. This flange opening increased the interlaminar tensile
stresses through the thickness of the flange-web bend. The inner flange delaminated at a point
adjacent to the end tab in both beams. The second step of the failure process occurred while the
beam was being unloaded. Both beams seemed to twist out of plane after the initial failure causing

a large crack to propagate suddenly from the inner flange.

It seems that a compressive stress concentration exists on the inner flange near the end tab.
This could be due to an uneven transfer of load to the beam through the end tab. Further

modification is needed to avoid this type of failure in the future. The tab is only attached to the
web of the beam in the present configurations. A new tab which fits the dimensions of the beam
more closely and can be bonded to the flanges as well as the web might help to distribute the load
more evenly. Another test could be conducted with a set of strain gages at the location of initial
failure to determine the extent of the stress concentration. A more detailed finite element analysis

of this region could also be used to determine the stress concentration.

The long and short beams tested in configuration 2c which applies a relative compression to
the outer flange. These beams have the 'J' laminate mechanical properties and they both failed in
the same manner. A tensile failure occurred starting from one of the small bolt holes used to secure

the end tabs. Further analysis and design of the load transfer mechanism is needed so that beam
failure occurs in the test section.
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Figure 3.5 Failure Mechanisms of Beams Tested in Configuration 3b
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Concluding Remarks

Flexible manufacturing methods are needed to reduce the cost of using advanced
composites in primary commercial aircraft structure. One material system that allows for flexibility
is long discontinuous fiber thermoplastic matrix composite. In order to exploit this flexibility in an
economical way, a thorough understanding of the relationship between manufacturing and
component performance must be developed. This report reviews some of the recent work geared
toward establishing this understanding.

A Carreau fluid model is introduced into the previously developed micromechanics

formulations. The effects of varying the Carreau parameters are demonstrated using the model.
Additionally, the influence of fiber orientation distribution is investigated. Results show that a

small misalignment in the fibers can reduce the elongational viscosity by several orders of
magnitude without a large effect on the viscosity values.

By superimposing the closed form solutions for different regions of a curved beam structure one
can create a useful design tool for studying various degrees of material heterogeneity and beam
geometries. The results from these models show that the effects of material heterogeneity depend

heavily on the geometry of the structure. A rectangular cross section curved beam whose stiffness
decreases by 20% from the inside to outside radius shows a 28% increase in maximum stress over
a homogeneous beam with a radius to depth ratio R/t = 2. However the decrease is about 1% for a
similar beam whose R/t ratio is 10. Structures with a more general type of heterogeneity can be

studied using a Rayleigh-Ritz analysis. This approach can be used to study the effects of material
heterogeneity on stress concentrations near holes and notches as well as curved beam and other

type structures.

Several tests were conducted on prototype beams to determine load deflection and failure

characteristics. The major difficulty was devising a fixture that tests the beams in in-plane
bending. The failure observed were believed to be a result of out-of-plane bending and twisting.
Further work needs to be done to determine with confidence the probable behavior of these parts in

actual aircraft structural configurations.
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Introduction:

The primary goal of NASA's ACT program is to develop an integrated

composites technology base that will keep the U.S. airframe industry

competitive through the next several decades. Most of the program
effort at the airframers have focussed on structural design concepts

that take advantage of potential low cost processing and assembly

methods to achieve weight and cost goals. Fuselage of commercial

transports represent an area of the airplane that is being redesigned

in this manner where curved beam elements comprise a major

portion of the substructure.

One of the design concepts being evaluated by Boeing Commercial

Airplane Group (BCAG) for its ACT program is a hat stiffened fuselage

design where the curved "J" frame (figure 1) bonds directly to the
skin. BCAG is considering LDF rM Technology (Long Discontinuous

Fiber) for these curved "J" frames using Du Pont's patented stretch

forming process. The main concern of this design is where stringers

extend through the cutouts in the "J" frame. Structural performance

of these frames will be largely determined by how severe the stress
concentration is in the region of the cutout. Thus, one of the

objectives of the University of Delaware's ACT program is to develop

process models, analytical techniques and test data that would aid in
the development of weight efficient curved beam designs.

The goals of this firm fixed price sub-contract to Du Pont from the

University of Delaware were :

(a) Demonstrate that a curved "J" beam element could be made

using a potential low cost fabrication method (i.e. stretch
forming)

(b) Produce flat laminates and curved "J" beam elements from the

LDF TM AS-4/PEKK material to be used for testing and analysis

Both of the above goals were met for this program. The remainder of
this report briefly describes the activities and results of each of the

tasks performed for this sub-contract. In conclusion, it is felt that

based on the results of this program along with other internal Du

Pont efforts (72" radius, 90 degree segment "Z" beam; figure 2) that

the concept of fabricating fuselage frames via LDF TM stretch forming
is feasible.



Statement of Work:

Task 4.1.1. Component Design/Specification

With the University of Delaware, the part dimension and geometry
was defined as given in figure 3. This part design was chosen after

discussions with NASA-Langley and Boeing Commercial Airplane

Group as to its value to Boeing's fuselage study. Two 12 ply layups
giving a nominal thickness of .064 inches were chosen which will

allow for testing the beam in the University of Delaware test

equipment. Six curved "J" beams were to be fabricated from each of

these layups. The layups were chosen to give one longitudinally

"stiff" and "soft" beam. The layup orientations, part designation and

number of parts are given below:

Part Design_tti0n # parts
J-# 6

J2-# 6

Layup Orientation # plies

[+45/-45/0/90/0/0]s 12

[+45/-45/90/+45/-45/0] s 12

Figure 4 shows how the plies were oriented in the "J" beams.

Task 4.1.2. Test Laminate Fabrication

Twelve 14" X 14" test laminates were fabricated and delivered to

University of Delaware. Laminates were made by laying up a multi-

ply stack of LDF TM AS-4/PEKK tape (fiber volume = 58%; ply thickness

= 0.0053") on a flat steel tool and consolidating the stack in a high

temperature/pressure autoclave using Kapton® as the bagging

material. The autoclave cycle consisted of a temperature ramp to 370

C under 300 KPa pressure, followed by an increase to 2.3 MPa

pressure with a dwell time of 20 minutes for consolidation, and then

cooled at a rate of 3-4 C/min. Vacuum (28-29 mm Hg) was kept on

the bag throughout the cycle. Layup orientations for the laminates

are given by the following:

# laminate_ Layup Orientation # plies

3 [+45/-45/0/901010] s 12

3 [+45/-45/90/+45/-45/0] s 12

3 [0]s 8

3 [+45/0/-45/90]s 8



Task 4.1.3. "J" Beam Tool Design and Fabrication

Risk reduction experiments were performed to determine stock

shape tool dimensions and optimum autoclave fabrication process
These experiments led to the current stock shape tools which were

fabricated from tooling steel. The tool is composed of three pieces

(sheet metal "Z", machined steel bar, machined flat plate). Two

autoclaved straight "J" beams (40" long; see figure 5) were made with

the measurements of the first beam given in table 1. The angles of

the straight "J" beam were within tolerances specified for use as a
stock shape. Likewise, the vertical height and thicknesses were

within a few percent of what was specified which was adequate for

stretch forming. Ultrasonic scans and photomicrographs verified that

the tool and autoclave process gave well consolidated "J" stock shapes
(see figures 6 and 7). Two more straight stock shape tools for the

autoclave were made to ensure an adequate supply of "J" stock

shapes were available to meet the delivery date for stretch formed
frames.

Curved "J" beam matched metal tool for the research stretch former

was fabricated and assembled. Safety checks and temperature

profiles were run on the tool to verify that it met design

requirements. The tool met the requirements and was cleared for

process development.

Task 4.1.4 Process Development

The stretch forming process to make curved "J" beams is

schematically shown in figure 8. A straight "J" stock shape was

inserted into the Du Pont Research Stretch Former and clamped in

place outside the heating zone. Electric heaters heated the part and

tooling to the process temperature of 370 C. At this point, the part
was stretched and formed to the contour of the tool. After the

stretching was completed, pressure was applied normal to the web

and flanges to fully reconsolidate the part. The part is then cooled to

below the resin glass transition temperature (156 C) while under

pressure before removing it from the machine.

Part quality was determined by evaluating photomicrographs of the

cross sections, ultrasonic scans of the web region and part thickness

along the beam. In determining the initial process conditions, priority



was given to consolidation level due to the results of the Boeing

Helicopter C-Channel program. Therefore, ultrasonic scans and visual
appearance (no wrinkles or buckles) were initially weighted more

than thickness uniformity in determining preliminary process
conditions.

Ten trial runs were needed to debug the tooling and obtain

curved "J" beams with no visual defects. In addition to debugging the

tool during these trial runs, the temperature profile, dwell times and

stretch forming rates were also varied. Consolidation pressures were

set at a high level to ensure low void parts were obtained. These
pressures were used throughout the program. Most of the stretch

formed parts showed 90% or greater of the web area having low
decibel losses (2-3 db) in their ultrasonic scans using 5 MHz

frequency (TTU) (figure 9). This generally indicates a void free area

which was verified by photomicrographs of the cross sections (figure

10).

Part thicknesses of the initial stretch formed beams C J-#"

layup) varied widely from the nominal thickness with the ends of

the parts showing a visual impression created by the tooling.

Modifications to the tooling eliminated these visual defects and
lowered the thickness deviation from nominal. "J2-#" curved beams

showed thicknesses with less part to part variation (+/-5%) and a
smaller deviation from the nominal thickness than the "J-#" curved

beams. Due to program cost and timing considerations, it was decided

that the process conditions after the tenth run would be used to

produce the 12 curved "J" beams even though more process

development was needed to improve part to part thickness

reproduciblity for the "J-#" layup beams.

Task 4.1.5. Produce 12 Curved "J" Beams

The following are the number of parts delivered of each layup
orientation:

# Parts

7

6

Layup Orientation

[+45/-45/0/90/0/0] s

[+45/-45/90/+45/-45/0] s

Figure 11 shows the final trimmed "J" beam element and a section of

the stock shape used to stretch form the curved "J" beam element.



An extra "J-#" beam was given to University of Delaware to use in

setting up their test equipment. All parts had ultrasonic scans of the

web region showing 95% or greater of the area having a decibel loss

of 4 or less (figure 12). As stated earlier this corresponds to less than

1% voids in these regions. Photomicrographs of the cap, web and

inner flange regions verified the C-scan observations that the curved

"J" beams had a low void content (figure 13).

Thickness measurements for these curved "3" beam elements

are shown in figures 14, 15 and 16. As stated in the Process

Development section, the consolidation pressures for the curved "J"

beams were not optimized during this program and were set at a

high level to ensure full consolidation. Consolidation pressures for

this program were approximately 5 times higher than what is
needed to consolidate a flat laminate. This accounts for most of the

curved "J" beam thickness variations due to transverse squeeze flow

of the 0 degree plies from the web out through the edges of the

beam. In addition, figures 15 and 16 showed that there was a layup

dependency on the thickness uniformity with the "J2-#" layup being

more uniform than the "J-#" layup. This was due to the "J2-#" layup

having a smaller percentage of 0 degree plies than the "J-#" layup

(17% vs. 50%). These observations are in agreement with the amount
of edge flash seen in the formed parts. It is felt that lower pressures

can be utilized to achieve better thickness uniformities without any

loss in consolidation. This is especially true for the "J4t" layup as was

suggested in the Process Development section.

The final measurements made on the curved "J" beams were on

the inner and outer radii. A Unigraphics CAD/CAM unit produced a

paper template of the inner and outer radii to visually determine

whether the beam outer dimensions matched those for the design.
All of the curved "J" beams fabricated had inner and outer radius

dimensions that matched those of the template along the entire

length of the arc (outer radius = 40.5"; inner radius = 37.8"). This

result was expected since match metal tooling was used to stretch

form the segment thereby giving outer dimensions within tolerance

of those specified. This is an important result since the outer radius
dimensions are critical for bonding frames into the current Boeing

ATCAS fuselage design.
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BCAG Curved "J" Frame for NASA ACT Program
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Figure 2 BLACK AND WHITE PHOTOGRA_m

72" Radius, 90 ° SegmenL "Z" Beam Demonstrator
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BLACK AND WHITE PHOTOGRAPH

Figure 5

Autoclaved Straight "J" Beam - 40" Long



Table 1

"J" Beam Stock Shape Dimensions

MEASLREMENT

1
2

3
4

5
6

7
8

9
10
11
12

13

AVE
MAX
MIN

STD DEV

A

90.559
90.694

90.572
90.454

89.758
90.224

90.273
90.024

90.319
90.694
89.758

0.936
0.315

ANGLE

B
89.877
89.869

90.132
89.679

90.262

89.9638
90.262
89.679
0.583

0.232

C

90.121
90.238

89.951
90.303
90.65

90.253
90.65

89.951
0.699

0.259

WIDTH

2.585
2.588
2.587

2.59
2.588
2.585

2.596
2.598

2.59
2.598
2.585

0.0132

0.00489

THICKNESS

0.066

0.066
0.064

0.064
0.064
0.063

0.065
0.064

0.065
0.063
0.064
0.063

0.064

0.064
0.066

0.063
0.003

0.001

B A

WIDTH

THICKNESS

C
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Figure 6
Ultrasonic Scan of

J-5 Straight Stock Shape -

Top Flange Area
( See Above)



Figure 7

Photanicrograph of J-9 Straight Stock Shape Cross-Section

- Cap Radii -
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Ultrasonic Scan of Curved "J" Beam
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Figure 10

Photomicrograph of J-9 Curved Beam Cross Section

- Cap Radii -



Figure 11

Curved "J'° Beam and Stock Shape Section
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Figure 12

Ultrasonic Scan of J-20 Curved "J" Beam Web Region



(a)
Figure 13

Photomicrograph of J-Z0 Curved "J" Beam (25x)

- Cap Radii -



(b)

(c)

Figure 13

Photomicrograph of J-20 Curved =J" Beam:
(B) Web Region

(C) Inner F]ange Radius
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